

Confidential © EPEX SPOT SE

ETS API Certificates

16.05.2022
Paris

Rel. V5.53

ETS API Certificates Page 2
Release V5.53 Confidential © EPEX SPOT SE

Table of Contents

1. Introduction 4

1.1 Audience 4

1.2 Purpose 4

2. Certification rules and process 5

2.1 General information 5

2.2 Certification process 5

2.3 Technical information 6

2.4 CSR Creation Rules 7

2.5 Revocation of certificate 7

2.6 Expiration and Renewal of a certificate 8

3. From getting your signed certificate (.pem file) to connecting
your API app 9

3.1 How to install your certificate so you can start your implementation 9

3.2 Why do you need a Key Store? 9

3.3 Key Store File formats 10

ETS API Certificates Page 3
Release V5.53 Confidential © EPEX SPOT SE

3.4 Using JKS or PKCS12 (PFX) files 10

3.5 Using JKS or PKCS12 with SoapUI 10

4. Examples of CSR and KeyStore files generation 11

4.1 Example of CSR generation using OpenSSL 11

4.2 Example of PKCS12 keystore generation using OpenSSL 12

4.3 Example of JKS keystore generation using Java keytool.exe 12

ETS API Certificates Page 4
Release V5.53 Confidential © EPEX SPOT SE

1. Introduction

1.1 Audience

This document is intended for customers who will use the ETS API, EPEX SPOT Market Operators and EPEX

SPOT IT Team.

1.2 Purpose

This documentation provides information about certificates needed to connect to ETS API Server.

It provides the technical information about certificates, the certificate management process and the process to

obtain a certificate.

1.3 Changes History Table

Date Version Change description

03.02.2021 V5.5 TLS and cipher suites changes postponed from ETS API 3.5 to 3.6

10.06.2021 V5.51 ETS API 3.5 postponed to Q4 2021, ETS API 3.6 postponed to Q2 2022

17.02.2022 V5.52 Section §2.3 Technical Info update with last TLS and cipher suites

announcements

18.05.2022 5.53 Security updates: TLS and cipher suites decommission
TLS v1.0 and 1.1 and “old” cipher suites will be decommissioned as of ETS

3.5.5

ETS API Certificates Page 5
Release V5.53 Confidential © EPEX SPOT SE

2. Certification rules and process

2.1 General information

The certificate needed for the ETS API is a signed public key:

• generated by a trusted Certificate Authority (CA),

• based on a certificate signing request customers send to EPEX,

• which is created by the customer using the private key

API Customers have to generate the private key. Once the private key has been generated it can be used to

generate the “Certificate Signing Request” file (CSR), as explained below.

Your private key should never be provided to anyone. Should for any reason the private part of the

certificate be shared outside of the member, EPEX SPOT will not be able to guarantee the member identity.

The below sections will guide you through the required steps to obtain a signed certificate from EPEX and

generate the mandatory technical file (keystore) each of your API application needs to establish a secure

connection with an ETS API server (section 3).

2.2 Certification process

The following schema describes the certification process for customers (Members and Market Data Customers):

Steps:

1. Market Operators validate the Member/Market Data customer identity (referred below as the “customer”).

2. The customer first generates the private key, and once the key has been generated the CSR can be

generated using that private key.

3. The customer sends by email the CSR file to Market Operators but does NOT share the private key.

4. Market Operators transfer the CSR file to a Technical Operator in order to get the certificate signed.

ETS API Certificates Page 6
Release V5.53 Confidential © EPEX SPOT SE

5. The Technical Operator uses the CSR file and the Certificate Authority (CA) certificate to generate the Signed

certificate (.pem file).

6. The Technical Operator transfers the signed certificate (.pem file) to Market Operators.

7. Market Operators send by email the signed certificate (.pem file) to the customer.

8. What to do with the signed certificate (.pem file)? : please refer to section 3 explaining how to build the Key

Store your API application needs to be able to connect to the ETS API server, using both the private key

generated at step #2 and the signed certificate (.pem file).

Notes:

• The exchanged files (CSR File and Signed Certificate file) are public and can be exchanged by email.

• You can double check your CSR content by using a CSR decoder such as

https://certlogik.com/decoder/

• The only valid certificates that can be used with the ETS API will be signed by the EPEX API Certificate

Authority.

2.3 Technical information

In order to ensure a secure communication with ETS API, the following solutions have been implemented:
- All communications between ETS API Clients (member application) and ETS API Server are

encrypted, using HTTPS

- Bi-lateral authentication system which requires a Client certificate to connect

The following solutions are supported by ETS API:
- Protocol TLS 1.2

o TLS v1.0 and 1.1 will be decommissioned as of ETS 3.5.5,

o TLS v1.3 will NOT be introduced as previously announced,

o We will stick to TLS v1.2 until further notice.

- SHA2 cryptographic hash function with RSA encryption for public key (sha256WithRSAEncryption)

o Note: other signing algorithms are not supported in this version.

List of supported cipher suites: (*): decommissioned as of ETS 3.5.5, first in SIMU2, then PROD and SIMU1.

Cipher suites SIMU2 status (*) SIMU1 and PROD status (*)

• TLS_RSA_WITH_AES_128_CBC_SHA256 Decommissioned Decommissioned

• TLS_RSA_WITH_AES_256_CBC_SHA256 Decommissioned Decommissioned

• TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 Supported Supported

• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 Supported Supported

• TLS_RSA_WITH_AES_256_GCM_SHA384 Decommissioned Decommissioned

• TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 Supported Supported

• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 Supported Supported

• TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 Decommissioned Decommissioned

• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 Supported Supported

• TLS_RSA_WITH_AES_128_GCM_SHA256 Decommissioned Decommissioned

• TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 Supported Supported

https://certlogik.com/decoder/

ETS API Certificates Page 7
Release V5.53 Confidential © EPEX SPOT SE

2.4 CSR Creation Rules

Each certificate is unique and is identified by a combination of Country Name / Organization Name / Common

Name.

This information is used by EPEX SPOT IT for the validation of the CSR and the generation of the signed

certificate.

The following conditions must be met for the creation of the CSR:
- Only ASCII characters are accepted

- Country Name (2 letter code) : Must respect the country of the company (Validated by Operators),

- Organization Name (eg, company): Must meet the company short name. The company short name is

the one set by EPEX SPOT at member registration; please contact Market Operation if you do not

remember your company short name,

- Common Name (e.g. server FQDN or YOUR name): Client name must start with OrganizationName _

(OrganizationName is the same as previous field). If you have several certificates, this name must be

unique.
o Example:

▪ For test environments SIMU1 and SIMU2: [your company Short Name]ApiClientSimu
▪ For Production: [your company Short Name]ApiClientProd

2.5 Revocation of certificate

In case the member would like to revoke a certificate (e.g. if the private key got exposed), the process is as

follows:
- The member contacts Market Operators, who validate the member identity

- The member provides the Country Name / Organization Name / Common Name combination which

identifies the certificate to be revoked

- The member is contacted (by email) by Market Operators to confirm the revocation of his certificate

Once revoked, a certificate cannot be used anymore.

ETS API Certificates Page 8
Release V5.53 Confidential © EPEX SPOT SE

2.6 Expiration and Renewal of a certificate

The certificates are valid for 2 years in PRODUCTION and 5 years in SIMULATION.

EPEX Market operators monitor PRODUCTION certificates expiry dates and informs customers one month

before the expiry date.

The validity period of a certificate cannot be extended and a new CSR should be provided to

EPEXSPOT to generate a new signed certificate.

Note: The same “Country Name / Organization Name / Common Name” combination can be used for the

new CSR.

ETS API Certificates Page 9
Release V5.53 Confidential © EPEX SPOT SE

3. From getting your signed certificate (.pem file) to connecting

your API app

Once you received your signed certificate from EPEX (.pem file, signed by GlobalSign RSA OV SSL CA 2018) there are 2

steps you need to follow to get ready:

1. Install the root certificate

2. Build a Key store

These concepts and related tools are described the below sections.

3.1 How to install your certificate so you can start your implementation

o EPEX signed the certificate and send you a .pem file.

o Please generate a .cer file out of the signed certificate (.pem file) signed sent by EPEX

o double click on the “EPEX_customer.cer” file to install the CA root certificate:

• once the certificate is installed and added to the Trusted Root you should be able to retrieve WSDL/XSD files

via the Browser itself (favored browser : please use Internet Explorer if you experience difficulties with

Chrome),

• this is a pre-requisite before being able to import the WSDL in your development application (for this you might

need to generate a .jks certificate for Java or a .pkcs12 certificate, like explained below.

The second step is the key store as described below.

3.2 Why do you need a Key Store?

Your API application cannot directly use the signed certificate sent by EPEX. It needs in addition your certificate private key
(generated at the same time as your CSR), combined in an appropriate container called a key store.

ETS API Certificates Page 10
Release V5.53 Confidential © EPEX SPOT SE

Key Store = your signed certificate + its private key

This KeyStore file (with any file extension) is required when the application wants to communicate over TLS through a secure
channel.
The most popular keyStore files are:

- JKS (Java KeyStore), a Java proprietary format;
- PKCS12, one of the Public-Key Cryptography Standards, not Java specific

3.3 JKS AND PKCS12 (PFX) Key Store File formats

The biggest difference between JKS and PKCS12 is that:

• JKS is a format specific to Java which stores private keys and certificates.

• PKCS12 is a standardized and language-neutral way of storing encrypted private keys and certificates.

JKS Key store file format

The default and most widely used format for these files is JKS (Java Keystore) for a Java based application until Java 8. With

Java 9, the default Keystore format changed from JKS to PKCS12.

That is until Java 8 your keystore format will be JKS if you don't specify the -storetype while creating your keystore with the

keytool command. However, the default keystore type will be changed to PKCS12 in Java 9 because of its enhanced

compatibility compared to JKS.

PKCS12 Key store file format

PKCS#12 is a file format (often called .p12 or .pfx) where you can store a private key and certificates. It's used for

converting/transporting keys and certificates.

PKCS12, is a standard keystore type is not Java specific. It is portable and can be operated with libraries written in languages

such as Java, C, C++ or C#.

3.4 Using JKS or PKCS12 (PFX) files

Java applications typically expect to get the keys they need from JKS, and it's easy to access from your own Java apps.

JKS is not accessible from outside Java though.

PKCS12 (aka PFX) files, on the other hand, are more secure language-neutral files that have been around long enough to

be supported just about everywhere.

At the end of the day, the decision on what Keystore type to use should be based on how you plan to use the private

key - that is: what applications will need to use the private key and what format(s) of key store do they already handle.

3.5 Using JKS or PKCS12 with SoapUI

With the Soap UI application, one can use any key store file format (.p12, .pfx, .jks) for a secure communication channel

over TLS. Soap UI supports all these file formats and works in the same way with all of them.

ETS API Certificates Page 11
Release V5.53 Confidential © EPEX SPOT SE

4. Examples of CSR and KeyStore files generation

4.1 Example of CSR generation using OpenSSL

Pre-requisite: OpenSSL must be installed to be able to generate a CSR.

• Command to generate a CSR and Private Key associated with password protection for private key:

 openssl req -new -keyout [PrivateKeyPath] -out [CSRPath]

• Command to generate a CSR and Private Key associated without password protection for private key:

 openssl req -new -nodes -keyout [PrivateKeyPath] -out [CSRPath]

Generation example on a Linux server (same command line when OpenSSL is installed on Windows):
a) With Password protection for private key

b) Without Password:

ETS API Certificates Page 12
Release V5.53 Confidential © EPEX SPOT SE

4.2 Example of PKCS12 keystore generation using OpenSSL

Pre-Requisites:

4.3 OpenSSL must be installed

- you need to have the private Key file and the signed certificate (.pem file)

Command to generate a PKCS12 with private key and certificate:

 openssl pkcs12 -in [CertitifactePath] -inkey [PrivateKeyPath] -export -out [Pkcs12Path]

Generation example on a Linux server (same command line when OpenSSL is installed on Windows):

4.4 Example of JKS keystore generation using Java keytool.exe

Pre-Requisites:

- Java must be installed

- you need to have a PKCS12 file.

Command to generate a JKS from PKCS12:

 keytool.exe -importkeystore -deststorepass [WantedKeystorePassword] -destkeystore

[DestinationKeystoreName.jks] -srckeystore [SourceKeyStore -srcstoretype PKCS12

Example:

ETS API Certificates Page 13
Release V5.53 Confidential © EPEX SPOT SE

ETS API Certificates Page 14
Release V5.53 Confidential © EPEX SPOT SE

5. Troubleshooting

5.1 How to debug a handshake issue

You have your signed certificate (.pem file) and private key, but you do not success in connecting to our server,

because of an handshake issue you can use one of the two below alternative approaches

• Option 1: Command to check your TLS connection to our server. Simulation example:

o openssl s_client -showcerts -connect ets-simu2.api.epexspot.com:4444 -tls1_2 -state -key

<privateKey> -cert <PEMFile>

o In case of a successful connection you shoud get the following message: TO BE COMPLETED

o In case of failure:

• Option 2: Command to download the WSDL file from our API server:

o curl --tlsv1.2 --tls-max 1.2 --key <privateKey> private.key --cert <PEMFile> -v https://ets-

simu2.api.epexspot.com:4444/OpenAccess/3.4?wsdl

o In case of a success the whole WSDL file content should be displayed.

Note: In case you are using PYTHON and unable to establish the TLS connection:

1) Force the use of the TLS version 1.2.

2) Don’t use a pkcs12 keystore –just pass the .pem file and your private key .key file as separate arguments TO

WHICH COMMAND/WHERE?

https://ets-simu2.api.epexspot.com:4444/OpenAccess/3.4?wsdl
https://ets-simu2.api.epexspot.com:4444/OpenAccess/3.4?wsdl

